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Several universal formulas that predict approximate values for percolation thresholds of all periodic graphs
have been proposed in the physics and engineering literature. The existing universal formulas have been found
to have substantial errors in their predictions for some lattices. This paper proposes a set of desirable criteria
for universal formulas to satisfy, and investigates which criteria are satisfied by two bond threshold formulas
and two site threshold formulas most cited in the literature. The analysis is limited to lattices in two
dimensions.
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I. INTRODUCTION

Since the origins of percolation theoryf1g, the determina-
tion of percolation thresholds has been a challenging prob-
lem. Exact solutions have been found only for arbitrary trees
f2g and a small number of periodic two-dimensional graphs
f3–6g. For other graphs of interest, the problem has been
approached by simulation and estimation, e.g.,f7,8g, and
through rigorous bounds, e.g.,f9–18g.

Research on percolation thresholds attempts to understand
the dependence of the percolation threshold upon the de-
tailed structure of the underlying lattice graph. For over 40
years there have been efforts to find auniversal formula,
based on a small number of features of the underlying lattice,
for predicting the values of the percolation threshold for all
lattice graphs. We provide a few important examples.

Vyssotskyet al. f19g studied bond percolation on eight
regular two- and three-dimensional lattices. They com-
mented that “pc appears to be little affected by differences of
lattice type if the number of dimensions and coordination
number are the same,” and mentioned the approximation

pc =
d

sd − 1dq
, s1d

whered is the dimension of the lattice andq is the coordi-
nation numbersor vertex degreed of the lattice.

For site percolation, the formula

pc =
1

Îq − 1
, s2d

proposed by Galam and Maugerf20,21g obtained fair results
in two dimensions, but not for higher dimensions.

Galam and Maugerf22,23g provided estimates for several
lattices using the power law formula

pc = p0fsd − 1dsq − 1dg−adb, s3d

where the parametersp0, a, andb were determined by a fit
to several exactly known or precisely estimated percolation
threshold values. The lattices studied were classifed into
three “universality classes.” For the two classes of lattices
with dimensionsdø7, b=0 for site percolation andb=a for
bond percolation. One of these classes includes the two-
dimensional square, triangular, hexagonal, and dice lattices,

for which p0=0.8889 anda=0.3601 for site models andp0
=0.6558 anda=0.6897 for bond models. The other class
includes the Kagomé lattice and other lattices with 3ød
ø7, for whichp0=1.2868 anda=0.6160 for site percolation
and p0=0.7541 anda=0.9346 for bond percolation.sThe
third class, which we will not consider here, consists of lat-
tices in eight or more dimensions.d For the lattices consid-
ered in f22g, the maximum deviation of the formula from
numerical estimates is ±0.008.

Since the universality classes are not precisely defined in
terms of properties of the lattice graphs, it is unclear to which
class a new lattice belongs. However, in practice, the class
for a particular lattice can be assigned if either the bond or
site threshold is known: Compute the threshold estimates for
both class formulas, then assign the class corresponding to
the most accurate estimate. This procedure assigns the same
class for both bond and site models for the lattices we con-
sider.

Although the formulas of Galam and Mauger are in ex-
tremely good agreement with simulation estimates for the
lattices studied, some numerical discrepancies have been
noted in the past. Van der Marckf24g noted that if there is to
be a universal formula for percolation thresholds, it needs to
be based on more information thand and q only. As ex-
amples, he provides two three-dimensional lattices withd
=3 andq=8, the body centered cubic lattice, and the stacked
triangular lattice. Their site percolation threshold estimates
are 0.246 and 0.2623 respectively, with bond percolation es-
timates of 0.1803 and 0.1859, respectively. Babalievskif25g
investigated and confirmed a discrepancy of 0.020 in the
estimate for the value of the bond percolation threshold of
the ferrovariant of the dodecagonal lattice. However, much
larger errors exist: Wiermanf26g pointed out that there are
errors in the values of these formulas as large as 0.3434.

This study proposes the following collection of desirable
properties for universal formulas, as part of the development
of a framework for evaluating various universal formulas.

The ideal universal formula for percolation thresholds
will

sid be well-defined;
sii d be easily computable;
siii d provide values only between 0 and 1;
siv depend only on the adjacency structure of the lattice;
svd be accurate;
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svid be consistent with the duality relationshipsfor bond
modelsd and the corresponding matching relationshipsfor
site modelsd;

svii d be consistent with the containment principle;
sviii d be consistent with the contraction principlesfor

bond modelsd;
sixd be consistent with subdivision of edgessfor bond

modelsd.
The first three properties are necessary for any reasonable

formula. Accuracy of predictions is the single most important
property. The final four ask that certain theoretical properties
that have been proved for percolation thresholds hold for the
predictive formulas.

In Sec. II, we explain the meaning and justification of
each property. However, we also devote a separate section,
Sec. III, to a discussion of accuracy, due to its importance.
The results of our evaluation are summarized in Sec. IV.

Sections II and III also contain evaluations of the four
universal formulas that were mentioned above: the formula
of Vyssotsky-Gordon-Frisch-HammersleysVGFHd and the
Galam-Mauger power lawsGM-pld for bond thresholds, and
the Galam-Mauger square root formulasGM-srd and Galam-
Mauger power lawsGM-pld for site thresholds. In this initial
investigation, we limit ourselves to formulas for two-
dimensional infinite graphs, since there is only imprecise
knowledge of percolation threshold values in other dimen-
sions. These four formulas were chosen as the most cited in
the literature. All four universal formulas studied here are
based on the average degree of the infinite graph. For the
average degree to be well-defined, and for appropriateness
for applications, we restrict consideration to the prediction of
percolation thresholds for infinite two-dimensional periodic
graphs, where a periodic graph is as defined by Kestensf4g,
pp. 10–11d: An infinite graph isperiodic in d dimensions if it
is connected, locally finite, contains no loops, and may be
embedded inRd in such a way that each coordinate vector is
a period for the image and every compact set ofRd intersects
only finitely many edges. Furthermore, we consider only
graphs that have no pendant vertices, i.e., vertices of degree
1, since such vertices cannot contribute to percolative behav-
ior.

II. DISCUSSION OF PROPERTIES

We now elaborate on each of the desirable properties for
percolation thresholds listed in our evaluation framework.

A. Well-defined

A universal formula should give a well-defined unique
value for every periodic graph. Due to periodicity, the aver-
age degree can be defined naturally as the limit of the aver-
age degrees for a sequence of finite rectangles expanding in
both dimensions, or equivalently as the average degree of the
graph in a rectangle of one period width in each dimension.
Thus, the VGFH and GM-sr formulas are well-defined. For
the GM-pl formulas, as noted in the Introduction, if either
the bond or site threshold is known for a lattice, a universal-
ity class can be assigned. However, the GM-pl formulas do

not provide a clear definition of the “universality classes.”
Since it is not clear which formula applies to any particular
graph, the GM-pl formulas do not satisfy this property.

B. Easily computable

A universal formula should be a function of graph param-
eters that are easily computed. The formulas considered in
this initial investigation are all functions of the average de-
gree, which is relatively easily determined, as long as the
fundamental periodic region contains few vertices.

However, estimates based on a limit of the number of
spanning trees in a regionsas the region expandsd have been
proposedf27–29g, and in early percolation studies connec-
tions with the connective constant of self-avoiding walks on
the lattice were considered. Both of these values are exactly
known for few lattices, and reasonably accurate estimates of
the unknown values may take substantial computational ef-
fort. Dependence upon such parameters seriously limits the
usefulness of the universal formula.

C. Values in [0,1]

Since the percolation threshold is a probability value, its
value for any lattice graph must lie in the intervalf0,1g. One
would expect this to be trivially satisfied for any proposed
universal formula, and it is for the VGFH and GM-sr univer-
sal formulas. However, it fails dramatically for GM-pl for-
mulas as the average degree approaches two: For bond
thresholds, the limit asq→2 is p02

a<1.0578 for the class 1
formula and is 1.4414 for the class 2 formula. For site thresh-
olds, the limit for the class 2 formula isp0=1.2868.

Note that the limiting values are not actually attained by a
lattice with q=2. However, lattice graphs withq slightly
larger than 2 can be constructed. For example, consider in-
serting a diagonal path withn vertices in each face of the
square lattice. By lettingn increase,q may be made arbi-
trarily close to 2.

D. Adjacency structure

From the definition of the percolation model, the percola-
tion threshold depends only on the adjacency structure of the
lattice. All four universal formulas investigated here are
functions of the average degree, and thus satisfy this prop-
erty. However, there is a proposal in the literature to estimate
percolation thresholds on the basis of a filling factorf30g,
i.e., the portion of the plane that is covered by certain disks
centered at the vertices. A universal formula based on a fill-
ing factor would depend on the embedding of the lattice into
the plane, which is irrelevant for the percolation model and
thus the value of the percolation threshold of the lattice.

E. Accuracy

There are several difficulties in assessing the accuracy of
universal formulas. One cannot determine the precise error
that a formula makes except in the few cases that the critical
probability is exactly known. Even when the precise error is
known for a set of lattices, there are options of comparing
different universal formulas on the basis of maximum error,
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median error, or mean error. Of course, these values will be
dependent upon the set of lattice graphs used for the com-
parison. In the case of the Galam and Mauger power law
estimates, there is the additional complication that the uni-
versality class of a lattice is not well-defined. We discuss
some approaches for dealing with these issues, and carry out
an analysis of accuracy, in Sec. III.

F. Duality and matching

An important theorem in percolation theory, due to Kesten
f4g, establishes the relationship of bond percolation thresh-
olds for a pair of dual planar graphs,G andG* . If the graphs
have an axis of symmetry, then

pcsGd + pcsG*d = 1.

Thus, it is desirable for a universal formula to provide pre-
dictions of the bond percolation thresholdsp̂csGd and p̂csG*d
which satisfy

p̂csGd + p̂csG*d = 1.

For site percolation, Kesten’s theorem proves that the
same relationship holds for percolation thresholds of pairs of
matching graphs, which were introduced by Sykes and Es-
sam f31g. While we will not give the rather complicated
definition here, note that the line graphs of a pair of dual
planar graphs are a pair of matching graphs. It is also desir-
able that a universal formula for site percolation thresholds
be consistent with the matching relationship.

A graph that is isomorphic to its dual graph is calledself-
dual, and similarly we may defineself-matching. As ex-
amples, the square lattice is self-dual and the triangular lat-
tice is self-matching. Kesten’s results imply in both cases
that the appropriate percolation threshold is equal to one-
half. Note that if a universal formula fails to be consistent
with the dualitysor matchingd relationship, it is possible that
it is still consistent with self-dualitysor self-matchingd.

Three of the formulas under investigation here fail both
the duality or matching relationship and the self-duality or
self-matching property, since the estimate for the bond per-
colation threshold for the square lattice and the site percola-
tion threshold for the triangular lattice are not one-half. The
GM-sr formula is particularly poor with an estimate of
0.4472 for the triangular lattice site threshold. The GM-pl
formulas have relatively small errors regarding self-duality
and self-matching, but have larger errors when considering
dual or matching pairs.

The VFGH formula is perfectly consistent with duality,
and thus also self-duality. This was shown by Sykes and
Essamf31g using Euler’s formula together with the one-to-
one correspondences between edges in the graph and its dual
and between faces and vertices of the two graphs.

G. Containment

Fisher’s containment principlef32g states that ifG is a
subgraph ofH, then

pcsGd ù pcsHd

for both bond and site models. Thus, a universal formula
should provide estimates satisfying

p̂csGd ù p̂csHd

as well.
We now show that the VGFH and GM-sr universal for-

mulas are not consistent with the containment principle,
since they are monotone nonincreasing functions of the av-
erage degree: If we take a periodic graphG with average
degree greater than 2, we can add sufficiently long paths
periodically to obtain a graphH with smaller average degree
thanG. Then,G is a subgraph ofH, sopcsGdùpcsHd by the
containment principle, butqsGd.qsHd, so the formulas pro-
vide estimatesp̂csGd, p̂csHd.

The analysis is complicated because the GM-pl formulas
are not well-defined. The argument above is valid for the
formula within each class. However, it is possible that there
is a graphG which is a subgraph ofH where the two graphs
are in different classes, so that different formulas apply.
Without a specification of the GM classes, we have not con-
structed an example to show that the GM-pl formulas are
inconsistent with the containment principle.

H. Contraction

The contraction principle, introduced by Wiermanf33g,
states that ifG is obtained by contracting edges inH, then

pcsGd ø pcsHd

for bond models. Thus, a universal formula should provide
estimates satisfying

p̂csGd ø p̂csHd

as well.
We now show that the VGFH and GM-sr universal for-

mulas are not consistent with the contraction principle, since
they are monotone nonincreasing functions of the average
degree. In Fig. 1, we show a graph with average degree 3.75
in which edges can be contracted to obtain a graphsthe hex-
agonal latticed with average degree 3. Thus, the estimated
value for the threshold of the contraction graph is less than
the estimate for the threshold of the original graph.

The fact that the GM-pl formulas are not well-defined
affects this analysis in the same way as for containment.

FIG. 1. Contraction example. Contract all six edges in each of
the triangles. The original graph has average degree 3.75, while the
contracted graph is the hexagonal lattice, which has average
degree 3.
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I. Subdivision

Given a graphG, let Gk denote the graph obtained by
subdividing each edge ofG into k edges, i.e. by replacing
each edge ofG by a path ofk edges. For bond percolation

pcsGkd = fpcsGdg1/k,

so it is desirable that a universal formula provide estimates
satisfying

p̂csGkd = fp̂csGdg1/k.

Consider the subgraph ofG contained in a rectangular
region, containingn vertices ande edges and thus average
degreeq=2e/n. Then Gk containsn* =n+sk−1de vertices
ande* =ke edges, so

qsGkd =
2e*

n* =
2kq

2 + sk − 1dq
.

Taking limits as the rectangular region expands provides the
relationship for the average degrees of the infinite graphs.

To investigate consistency of the VGFH formula with
subdivision, we comparefp̂csGdg1/k with

p̂csGkd =
2/q + k − 1

k
.

There are large discrepancies between the two formulas,
since asq→` , fp̂csGdg1/k=s2/qd1/k converges to zero, while
p̂csGkd converges tosk−1d /k.

For the GM-pl formula, we compare

fp̂csGdg1/k = p0S 2

sq − 1dD
a/k

with

p̂csGkd = p0S 4sk − 1d/q + 2

s2k − 1 − 2sk − 1d/qdD
a

.

Again, asq→`, the first quantity converges to zero, while
the second tends a positive constant.

Therefore, none of the VGFH or GM-pl universal formu-
las provide an adequate approximation under subdivision.

III. ACCURACY

Our evaluation of the accuracy of the universal formulas
has two components.s1d For a selection of graphs, we deter-
mine the errors made by each formula, and consider the
maximum, median, and mean error.s2d We consider theoret-
ical evidence regarding the maximum errors made by the
formulas.

Throughout this discussion, if a lattice graph has been
identified by Galam and Mauger as being in a specific class,
we used only the formula value for that class. For other
lattices, we computed the formula values for both classes of
low-dimensional lattices, and computed errors using the for-
mula closest to the exact value, bounds, or estimates used as
the “correct” value.sThe Galam-Mauger class used for each
lattice is indicated by a superscript in Tables I and III.d We
recognize that this procedure gives an advantagesperhaps
significantd to the Galam and Mauger power law formulas.

A. Accuracy of bond model formulas

For the evaluation of the bond percolation threshold for-
mulas, we selected nine lattice graphs. The exact critical
probability value is known for five of the graphs—the square
f3g, triangular and hexagonalf5g, and bowtie and bowtie dual
latticesf6g: The other four graphs are the only lattices in the
physical science literature for which the bond percolation
thresholds are nearly exactly knownf16–18g, i.e., bounded in
an interval of length less than 0.01.

Table I provides the numerical comparisons of the VGFH
and GM-pl bond threshold formulas. The maximum error is
smaller for the GM-pl formula than for the VGFH formula:
0.0598 versus 0.0728. The median error for the VGFH for-
mula s0.0140d is much larger than that of the GM-pl formula
s0.0054d. The average error of the VGFH formulas0.0251d is
more than twice as large as the GM-pl formulas0.0124d,
mainly since two errors are quite large rather than just one.
Note that even allowing the Galam and Mauger estimate to
use the formula for the class that gives the closest result, the
VGFH formula still has a smaller error for two of the nine
lattices. These comparisons are summarized in Table II.

Wiermanf34g has shown that there exist graphs with av-
erage degree 6 that have bond percolation thresholds arbi-

TABLE I. Numerical comparison of the VGFH and GM-pl bond percolation formulas for nine different
periodic lattices which are exactly or nearly exactly solved. Each superscript in the column labeled GM-pl
value indicates which class formula provides the value given.

Lattice name Value or bounds q VGFH value VGFH error GM-pl value GM-pl error

s3, 122d 0.7395,0.7415 3 0.6667 0.0728 0.75412 0.0126

Hexagonal 0.6527 3 0.6667 0.0140 0.65581 0.0031

DsBowtied 0.5955 10/3 0.6000 0.0045 0.58971 0.0058

Kagomé 0.5216,0.5277 4 0.5000 0.0216 0.51622 0.0054

Square 0.5000 4 0.5000 0.0000 0.49581 0.0042

Dice 0.4723,0.4784 4 0.5000 0.0216 0.49581 0.0174

Bowtie 0.4045 5 0.4000 0.0045 0.40661 0.0021

Triangular 0.3473 6 0.3333 0.0140 0.34861 0.0013

Ds3,122d 0.2585,0.2605 6 0.3333 0.0728 0.32032 0.0598
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trarily close to zero, and by duality, graphs with average
degree 3 that have bond percolation thresholds arbitrarily
close to 1. Thus, the VGFH formula makes errors of at least
0.3333 and the GM-pl formula makes errors of at least
0.3206.

B. Accuracy of site model formulas

There are only three lattices in the physical science litera-
ture for which the exact site percolation threshold is known,
and there are no nearly exactly solved cases. For this reason,
we must use simulation estimates as a standard for evaluat-
ing site threshold formulas. We will rely on high precision
simulation estimates of the site percolation thresholds of the
11 Archimedean lattices by Suding and Zifff8g.

Table III provides the numerical comparisons of the
GM-sr and GM-pl site threshold formulas. The GM-sr for-
mula underestimates the percolation threshold for 10 of the
11 graphs. It also has nearly twice as large a maximum error
s0.1008d as the GM-pl formulas0.0552d. The median errors
are strikingly different: 0.0502 for GM-sr versus. 0.0048 for
GM-pl. The average error of the GM-sr formulas0.0485d is
almost three times larger than that of the GM-pl formula
s0.0179d. These error measures are summarized in Table IV.

IV. EVALUATION OF UNIVERSAL FORMULAS

We summarize our evaluation of the four universal formu-
las in Table V. For each of the nine desirable properties, we
give our evaluation.

Some items for the GM-pl formulas are marked “Partly,”
to indicate that the answer depends on the specification of
classes of graphs used to make the formula well-defined. The
GM-pl formulas are computable only if the class can be de-
termined. With information about the bond or site threshold,
a class can be assigned to a lattice, and the GM-pl value can
be easily computed. The adjacency property will be satisfied
if the definition of classes depends only on the adjacency
structure. Consistency with the containment and contraction
principles depends on whether or not the related graphs can
be of different classes. As discussed in Sec. III, the accuracy
depends heavily on the class definition, since the formula
values for the two classes may differ by as much as 0.1470
for site models and as much as 0.0983 for bond models.

The rating for duality and matching are to be interpreted
as follows. “Yes” indicates that the VGFH formula has been
proved to be consistent with duality. “Fair” indicates that the
formula is not consistent with either duality or self-duality
sfor bond modelsd or with either matching or self-matching
sfor site modelsd, but the difference from one of the critical
probability sums of appropriate pairs of graphs is relatively
small. “Poor” is not consistent, as for “Fair,” but with rela-
tively large numerical errors. Although not used here,
“Good” would indicate that the formula is not consistent
with duality, but is consistent with self-duality, for example.

To evaluate accuracy, we have set absolute standards for
each of the three summary statistics for the error—
maximum, mean, and median—for ratings of Excellent,
Good, Fair, and Poor. The standards for the mean and median
are the same, while those for the maximum are twice as high.

TABLE II. Comparison of bond percolation formula accuracy of
the VGFH and GM-pl formulas by three measures of error.

VGFH GM-pl

Maximum 0.0728 0.0598

Median 0.0140 0.0054

Mean 0.0251 0.0124

TABLE III. Numerical comparison of site percolation formula values for the 11 Archimedean lattices,
using estimates by Suding and Ziff. Each superscript in the column labeled GM-pl value indicates which
class formula provides the value given.

Lattice name Suding-Ziff estimate q GM-sr value GM-sr error GM-pl value GM-pl error

s3, 122d 0.8079… 3 0.7071 0.1008 0.83962 0.0317

s4, 6, 12d 0.7478 3 0.7071 0.0307 0.69261 0.0552

s4, 82d 0.7297 3 0.7071 0.0226 0.69261 0.0371

Hexagonal 0.6970 3 0.7071 0.0101 0.69261 0.0044

Kagomé 0.6527… 4 0.5774 0.0753 0.65402 0.0013

s3, 4, 6, 4d 0.6218 4 0.5774 0.0444 0.59851 0.0233

Square 0.5937 4 0.5774 0.0163 0.59851 0.0048

s34, 6d 0.5795 5 0.5000 0.0795 0.54782 0.0317

s32, 4, 3, 4d 0.5508 5 0.5000 0.0508 0.54782 0.0030

s33,42d 0.5502 5 0.5000 0.0502 0.54782 0.0024

Triangular 0.5000… 6 0.4472 0.0528 0.49791 0.0021

TABLE IV. Comparison of site percolation formula accuracy of
the GM-sr and GM-pl formulas by four measures of error.

GM-sr GM-pl

Maximum 0.1008 0.0552

Median 0.0502 0.0048

Mean 0.0485 0.0179
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Admittedly, the levels are somewhat arbitrary, but we believe
that they make useful distinctions. The rating standards are
summarized in Table VI. We have opted not to combine
these ratings into a single measure of accuracy, so all three
ratings are included in Table V.

The evaluation shows that there is considerable room for
improvement in universal formulas for percolation thresh-
olds. All the formulas studied fail at least three of the nine
criteria. Although much older, the VGFH satisfies more of
the properties than the GM-pl formula for bond thresholds.
Between the two site threshold formulas, the GM-pl formula
fails more properties but is much more accurate than the
GM-sr formula.

V. FUTURE RESEARCH DIRECTIONS

The work described in this article is a preliminary inves-
tigation of a few universal formulas. There are three related
directions, described briefly in the following subsections, for
future research that are particularly interesting to the authors.

A. Other formulas or methods

Researchers have considered other means of developing
universal formulas for the percolation threshold, based on a
minimal spanning tree approachf27–29g, lattice Green func-
tions f35g, filling factor f30g, and preferred directions for
cluster formationf36g, which can be evaluated using the
framework of this paper.

B. Relationship between formulas for bond and site models

In f23g, Galam and Mauger extended their formula via the
use of an effective parameterqeff to replace the average co-
ordination numberq. They suggest that their formula has
predicting ability for percolation thresholds which have not
yet been computed. For example, if the site threshold of a
lattice has been estimated,qeff can be computed from the
formula for site thresholds, and can be used to predict the
bond threshold from the formula for bond thresholds.

The Galam & Mauger extension raises the issue of evalu-
ating the relationship between formulas for the bond thresh-
old and the site threshold. We have already identified some
desirable properties.

s1d The universal formulas should be consistent with the
bond-to-site transformation, satisfying

p̂csG bondd = p̂c„LsGdsite…,

whereLsGd denotes the covering graphsalso called theline
graph in the mathematical literatured of G. This equality
holds for percolation thresholds by an early observation of
Fisherf32g.

s2d For every graph, the universal formulas should satisfy
p̂csG bonddø p̂csG sited. Hammersleyf37g proved that this
holds for percolation thresholds of every infinite graph.

s3d The universal formulas should not imply that two
graphs must have their bond percolation and site percolation
thresholds in the same order. While this was commonly be-
lieved for many years, Wiermanf38g provided examples of
pairs of graphs with the site percolation thresholds in the
opposite order to their bond percolation thresholds.

C. Developing improved universal formulas

The ultimate goal of this research program is to develop
improved universal formulas. This is a challenging problem,
since it is clear from our analysis that the existing universal
formulas leave much to be desired.

A way must be found to incorporate other information
besides the dimension and the average degree of the lattice.
This can be seen in Table III, since graphs with the same
degree have different percolation thresholds. For example,
the four Archimedean lattices which are regular with degree
3 have estimated site percolation thresholds ranging from
0.6970 to 0.8079.

The major challenges are to identify other features of the
graphs that play a role in determining the percolation thresh-
old, and to formulate improved universal formulas which
satisfy more of the desirable properties than the existing uni-
versal formulas.

As one possibility, Wierman and Vahidif39g suggested
that the variability of the vertex degree has an effect on the
percolation threshold, with higher variability leading to
lower critical probability values. For planar lattice bond per-
colation models, the variability of degree of the dual lattice
corresponds to the variability of the number of sides of faces
in the original lattice, so characteristics of the faces may play
a role. Formulation of these ideas will necessarily involve

TABLE V. Summary of evaluations of universal formulas.

Bond model Site model

Property VGFH GM-pl GM-sr GM-pl

Well-defined Yes No Yes No

Computable Yes Partly Yes Partly

Values inf0,1g Yes No Yes No

Adjacency Yes Partly Yes Partly

Accuracysmaximumd Fair Fair Poor Fair

Accuracysmeand Good Excellent Poor Excellent

Accuracysmediand Fair Good Fair Good

Duality and matching Yes Fair Poor Fair

Containment No No No No

Contraction No No N.A. N.A.

Subdivision No No N.A. N.A.

TABLE VI. Standards for ratings of accuracy.

Maximum Median Mean

Poor Above 0.1000 Above 0.0500 Above 0.0500

Fair 0.0500 to 0.1000 0.0250 to 0.0500 0.0250 to 0.0500

Good 0.0200 to 0.0500 0.0100 to 0.0250 0.0100 to 0.0250

Excellent Below 0.0200 Below 0.0100 Below 0.0100
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investigation of alternative measures of variability of degree
and numbers of edges of faces.

A possible approach is to employ the existing formulas in
developing improved formulas. For example, since the
VGFH formula satisfies more properties than the others, we
plan to study the conversion of the VGFH formula via the
bond-to-site transformation to derive a site percolation
threshold formula which might outperform the GM-sr and
GM-pl formulas.
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