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Criteria for evaluation of universal formulas for percolation thresholds
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Several universal formulas that predict approximate values for percolation thresholds of all periodic graphs
have been proposed in the physics and engineering literature. The existing universal formulas have been found
to have substantial errors in their predictions for some lattices. This paper proposes a set of desirable criteria
for universal formulas to satisfy, and investigates which criteria are satisfied by two bond threshold formulas
and two site threshold formulas most cited in the literature. The analysis is limited to lattices in two

dimensions.
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I. INTRODUCTION for which py=0.8889 anda=0.3601 for site models angh

. . . . =0.6558 anda=0.6897 for bond models. The other class
Since the origins of percolation thedy], the determina- includes the Kagomé lattice and other lattices witke @

tion of percolation thresholds has been a challenging prob-

) ; <7, for whichpy=1.2868 anda=0.6160 for site percolation
lem. Exact solutions have been found only for arbitrary treesdnd po=0.7541 anda=0.9346 for bond percolatior(The
[2] and & small number of periodic two-dimensional graph§p;y'class, which we will not consider here, consists of lat-

[3-6]. For other graphs of interest, the problem has beefceg in eight or more dimensionsEor the lattices consid-
approached by simulation and estimation, e[d.8], and  gred in[22], the maximum deviation of the formula from

through rigorous bounds, e.¢9-18]. numerical estimates is +0.008.

Research on percolation thresholds attempts to understand sjnce the universality classes are not precisely defined in
the dependence of the percolation threshold upon the deerms of properties of the lattice graphs, it is unclear to which
tailed structure of the underlying lattice graph. For over 40class a new lattice belongs. However, in practice, the class
years there have been efforts to findumiversal formula  for a particular lattice can be assigned if either the bond or
based on a small number of features of the underlying latticesite threshold is known: Compute the threshold estimates for
for predicting the values of the percolation threshold for allboth class formulas, then assign the class corresponding to
lattice graphs. We provide a few important examples. the most accurate estimate. This procedure assigns the same

Wssotskyet al. [19] studied bond percolation on eight class for both bond and site models for the lattices we con-
regular two- and three-dimensional lattices. They com-sider. .
mented that fi. appears to be little affected by differences of ~ Although the formulas of Galam and Mauger are in ex-
lattice type if the number of dimensions and coordinationtremely good agreement with simulation estimates for the

noted in the past. Van der Mar¢R4] noted that if there is to

- d 1) be a universal formula for percolation thresholds, it needs to
(d-1)q’ be based on more information thahand g only. As ex-
amples, he provides two three-dimensional lattices wiith
. : =3 andg=8, the body centered cubic lattice, and the stacked
hation n_umbel(or vertex degrerof the lattice. triangular lattice. Their site percolation threshold estimates
For site percolation, the formula are 0.246 and 0.2623 respectively, with bond percolation es-
1 timates of 0.1803 and 0.1859, respectively. Babalie{/2%]
pc:ﬁ’ 2 investigated and confirmed a discrepancy of 0.020 in the
‘ estimate for the value of the bond percolation threshold of
proposed by Galam and Maud&0,2]] obtained fair results the ferrovariant of the dodecagonal lattice. However, much

Pc

whered is the dimension of the lattice anglis the coordi-

in two dimensions, but not for higher dimensions. larger errors exist: Wiermaf26] pointed out that there are
Galam and Maugdr2,23 provided estimates for several errors in the values of these formulas as large as 0.3434.
lattices using the power law formula This study proposes the following collection of desirable
Pe = Pol(d - 1)(q - 1)] 3, 3) properties for universal formulas, as part of the development

of a framework for evaluating various universal formulas.
where the parameters,, a, andb were determined by a fit The ideal universal formula for percolation thresholds
to several exactly known or precisely estimated percolatiorwill
threshold values. The lattices studied were classifed into (i) be well-defined;
three “universality classes.” For the two classes of lattices (i) be easily computable;
with dimensiongd<7, b=0 for site percolation and=a for (iii ) provide values only between 0 and 1;
bond percolation. One of these classes includes the two- (iv depend only on the adjacency structure of the lattice;
dimensional square, triangular, hexagonal, and dice lattices, (v) be accurate;
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(vi) be consistent with the duality relationshifor bond  not provide a clear definition of the “universality classes.”
modelg and the corresponding matching relationsiipr ~ Since it is not clear which formula applies to any particular

site modely, graph, the GM-pl formulas do not satisfy this property.
(vii) be consistent with the containment principle;
(viii) be consistent with the contraction princip(éor B. Easily computable
bond models . .
(ix) be consistent with subdivision of edgé®r bond A universal formula should be a function of graph param-

eters that are easily computed. The formulas considered in

The first three properties are necessary for any reasonabﬁrelis initia! inv_estigatipn are aI_I functions_, of the average de-
formula. Accuracy of predictions is the single most importantgreg’ Wh'ihl IS r.elﬁyvely .easny (t:igterrPlned, ‘?S long as the
property. The final four ask that certain theoretical propertieéun amental periodic region contains Tew vertices.

that have been proved for percolation thresholds hold for the Hov_vev?r, esjumates_(lzaset\ﬁ on a limit of ;[jhhe nurt:ber of
predictive formulas. Spanning trees in a regidas the region expanpbave been

In Sec. Il, we explain the meaning and justification of proposed[27—2$], and in early percolation studies connec-

each property. However, we also devote a separate sectio r(f)nls \t’f[’.'th the conneggve c(:jon;t?r?t (f)ftrslelf—avolldlng walks OTI
Sec. lll, to a discussion of accuracy, due to its importancek € la |fce \f/verei' (E?ns' ered. oth 0 bl ese va L:es atr_e ei<ac )]f
The results of our evaluation are summarized in Sec. IV, <NOWN for TEw atlices, and reasonably accurate estimates o

Sections 11 and IIl also contain evaluations of the four '€ Unknown values may take substantial computational ef-

universal formulas that were mentioned above: the formula(ort' Dependence upon such parameters seriously limits the
of Wssotsky-Gordon-Frisch-HammersldyGFH) and the usefulness of the universal formula.

Galam-Mauger power lawGM-pl) for bond thresholds, and _

the Galam-Mauger square root form@M-sr and Galam- C. Values in [0,1]

Mauger power laWGM-pl) for site thresholds. In this initial Since the percolation threshold is a probability value, its
investigation, we limit ourselves to formulas for two- value for any lattice graph must lie in the interyal1]. One
dimensional infinite graphs, since there is only imprecisayould expect this to be trivially satisfied for any proposed
knowledge of percolation threshold values in other dimenuniversal formula, and it is for the VGFH and GM-sr univer-
sions. These four formulas were chosen as the most cited il formulas. However, it fails dramatically for GM-pl for-
the literature. All four universal formulas studied here aremulas as the average degree approaches two: For bond
based on the average degree of the infinite graph. For th@resholds, the limit ag— 2 is p,22~ 1.0578 for the class 1
average degree to be well-defined, and for appropriatenessrmula and is 1.4414 for the class 2 formula. For site thresh-
for applications, we restrict consideration to the prediction ofolds, the limit for the class 2 formula j%=1.2868.

percolation thresholds for infinite two-dimensional periodic  Note that the limiting values are not actually attained by a
graphs, where a periodic graph is as defined by Ke§#n  lattice with q=2. However, lattice graphs witly slightly

pp. 10-1): An infinite graph isperiodicin d dimensions if it |arger than 2 can be constructed. For example, consider in-
is connected, locally finite, contains no loops, and may be&erting a diagonal path with vertices in each face of the
embedded iRR? in such a way that each coordinate vector issquare lattice. By lettingn increase,q may be made arbi-

a period for the image and every compact set bintersects trarily close to 2.

only finitely many edges. Furthermore, we consider only

models.

graphs that have no pendant vertices, i.e., vertices of degree D. Adjacency structure
1, since such vertices cannot contribute to percolative behav- o )
ior. From the definition of the percolation model, the percola-

tion threshold depends only on the adjacency structure of the
lattice. All four universal formulas investigated here are
Il. DISCUSSION OF PROPERTIES functions of the average degree, and thus satisfy this prop-
. erty. However, there is a proposal in the literature to estimate
;5ercolation thresholds on the basis of a filling fackae],
i.e., the portion of the plane that is covered by certain disks
centered at the vertices. A universal formula based on a fill-
A. Well-defined ing factor would depend on the embedding of the lattice into
the plane, which is irrelevant for the percolation model and
thus the value of the percolation threshold of the lattice.

percolation thresholds listed in our evaluation framework.

A universal formula should give a well-defined unique
value for every periodic graph. Due to periodicity, the aver-
age degree can be defined naturally as the limit of the aver-
age degrees for a sequence of finite rectangles expanding in
both dimensions, or equivalently as the average degree of the There are several difficulties in assessing the accuracy of
graph in a rectangle of one period width in each dimensionuniversal formulas. One cannot determine the precise error
Thus, the VGFH and GM-sr formulas are well-defined. Forthat a formula makes except in the few cases that the critical
the GM-pl formulas, as noted in the Introduction, if either probability is exactly known. Even when the precise error is
the bond or site threshold is known for a lattice, a universalknown for a set of lattices, there are options of comparing
ity class can be assigned. However, the GM-pl formulas ddalifferent universal formulas on the basis of maximum error,

E. Accuracy
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median error, or mean error. Of course, these values will be
dependent upon the set of lattice graphs used for the com
parison. In the case of the Galam and Mauger power law
estimates, there is the additional complication that the uni-
versality class of a lattice is not well-defined. We discuss
some approaches for dealing with these issues, and carry ot
an analysis of accuracy, in Sec. Il

F. Duality and matching

An important theorem in percolation theory, due to Kesten
[4], establishes the relationship of bond percolation thresh-
olds for a pair of dual planar graph@,andG”. If the graphs

have an axis of symmetry, then FIG. 1. Contraction example. Contract all six edges in each of
P(G) + DC(G*) =1. the triangles. The original graph has average degree 3.75, while the
contracted graph is the hexagonal lattice, which has average
Thus, it is desirable for a universal formula to provide pre-degree 3.
dictions of the bond percolation threshofigG) andp.(G")

which satisfy Pe(G) = pe(H)
Pe(G) + (G = 1. as well.

For site percolation, Kesten's theorem proves that the We now show that the VGFH and GM-sr universal for-
same relationship holds for percolation thresholds of pairs ofulas are not consistent with the containment principle,
matching graphs, which were introduced by Sykes and Essince they are monotone nonincreasing functions of the av-
sam[31]. While we will not give the rather complicated erage degree: If we take a periodic gra@hwith average
definition here, note that the line graphs of a pair of dualdegree greater than 2, we can add sufficiently long paths
planar graphs are a pair of matching graphs. It is also desiperiodically to obtain a grapH with smaller average degree
able that a universal formula for site percolation thresholdghanG. Then,G is a subgraph ofl, sop.(G)=p.(H) by the

be consistent with the matching relationship. containment principle, bui(G) > q(H), so the formulas pro-
A graph that is isomorphic to its dual graph is calkslf-  vide estimate$.(G) < p.(H).
dual and similarly we may defineself-matching As ex- The analysis is complicated because the GM-pl formulas

amples, the square lattice is self-dual and the triangular latare not well-defined. The argument above is valid for the
tice is self-matching. Kesten’s results imply in both casesormula within each class. However, it is possible that there
that the appropriate percolation threshold is equal to oneis a graphG which is a subgraph dfl where the two graphs
half. Note that if a universal formula fails to be consistentare in different classes, so that different formulas apply.
with the duality(or matching relationship, it is possible that Without a specification of the GM classes, we have not con-
it is still consistent with self-dualityor self-matching structed an example to show that the GM-pl formulas are
Three of the formulas under investigation here fail bothinconsistent with the containment principle.
the duality or matching relationship and the self-duality or
self-matching property, since the estimate for the bond per- H. Contraction
colation threshold for the square lattice and the site percola- . o . '
tion threshold for the triangular lattice are not one-half. The The contraction pr_mmple, mtroduc_ed by Wle_rm&B],
GM-sr formula is particularly poor with an estimate of States thatifG is obtained by contracting edgest then
0.4472 for the triangular lattice site threshold. The GM-pl P(G) < p(H)
formulas have relatively small errors regarding self-duality
and self-matching, but have larger errors when consideringr bond models. Thus, a universal formula should provide
dual or matching pairs. estimates satisfying
The VFGH formula is perfectly consistent with duality, 5.(G) < Pu(H)
and thus also self-duality. This was shown by Sykes and Pel™) = Pe
Essam[31] using Euler’'s formula together with the one-to- as well.
one correspondences between edges in the graph and its dualwe now show that the VGFH and GM-sr universal for-
and between faces and vertices of the two graphs. mulas are not consistent with the contraction principle, since
they are monotone nonincreasing functions of the average
degree. In Fig. 1, we show a graph with average degree 3.75
Fisher’s containment principlg32] states that ifG is @  in which edges can be contracted to obtain a griipé hex-
subgraph oH, then agonal latticg with average degree 3. Thus, the estimated
p(G) = py(H) value for the threshold of the contraction graph is less than
¢ ¢ the estimate for the threshold of the original graph.
for both bond and site models. Thus, a universal formula The fact that the GM-pl formulas are not well-defined
should provide estimates satisfying affects this analysis in the same way as for containment.

G. Containment
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TABLE |. Numerical comparison of the VGFH and GM-pl bond percolation formulas for nine different
periodic lattices which are exactly or nearly exactly solved. Each superscript in the column labeled GM-pl
value indicates which class formula provides the value given.

Lattice name  Value or bounds q VGFH value  VGFH error GM-pl value  GM-pl error

(3,12 0.7395,0.7415 3 0.6667 0.0728 0.7541 0.0126
Hexagonal 0.6527 3 0.6667 0.0140 0.6558 0.0031
D(Bowtie) 0.5955 10/3 0.6000 0.0045 0.5897 0.0058

Kagomé 0.5216,0.5277 4 0.5000 0.0216 0.3162 0.0054

Square 0.5000 4 0.5000 0.0000 0.4958 0.0042

Dice 0.4723,0.4784 4 0.5000 0.0216 0.4958 0.0174

Bowtie 0.4045 5 0.4000 0.0045 0.4066 0.0021
Triangular 0.3473 6 0.3333 0.0140 0.3486 0.0013

D(3,12) 0.2585,0.2605 6 0.3333 0.0728 0.3203 0.0598

I. Subdivision Ill. ACCURACY

Given a graphG, let Gy denote the graph obtained by  Qur evaluation of the accuracy of the universal formulas
subdividing each edge d& into k edges, i.e. by replacing has two componentsl) For a selection of graphs, we deter-
each edge o6 by a path ofk edges. For bond percolation mine the errors made by each formula, and consider the

maximum, median, and mean err(®) We consider theoret-

— 1/k
Pe(G) =[po(G) T, ical evidence regarding the maximum errors made by the
so it is desirable that a universal formula provide estimategormulas.
satisfying Throughout this discussion, if a lattice graph has been
N e 1K identified by Galam and Mauger as being in a specific class,
Pe(Gi) = [P(G) ™. we used only the formula value for that class. For other

Consider the subgraph @& contained in a rectangular lattices, we computed the formula values for both classes of
region, containingn vertices ance edges and thus average '0W-dimensional lattices, and computed errors using the for-
degreeq=2e/n. Then G, containsn’=n+(k-1)e vertices Mula closest to the exact value, bounds, or estimates used as
ande =ke edges, so the “correct” value(The Galam-Mauger class used for each

lattice is indicated by a superscript in Tables | and) We

2¢’ 2kq recognize that this procedure gives an advantgmehaps
4G = = Da’ ignificant to the Gal dM law formul
n 2+(k-1)q significan) to the Galam and Mauger power law formulas.
Taking limits as the rectangular region expands provides the A. Accuracy of bond model formulas

rel‘:’I‘_tcl)o?rf\?elztfogt?echg{;gﬁCde%;eterfeo{/tehle:l_'lnfflglrtriLﬂ;as\ztsh For the evaluation of the bond percolation threshold for-
9 y mulas, we selected nine lattice graphs. The exact critical

i A 1K i

subdivision, we comparkp(G) ™" with probability value is known for five of the graphs—the square
R 2/q+k-1 [3], triangular and hexagongb], and bowtie and bowtie dual

PGy = . lattices[6]: The other four graphs are the only lattices in the

k physical science literature for which the bond percolation
There are large discrepancies between the two formulashresholds are nearly exactly knowt6-18, i.e., bounded in
since agy— =, [P(G)]**=(2/g)** converges to zero, while an interval of length less than 0.01.
p(Gy) converges tak-1)/k. Table | provides the numerical comparisons of the VGFH
For the GM-pl formula, we compare and GM-pl bond threshold formulas. The maximum error is
alk smaller for the GM-pl formula than for the VGFH formula:
[P(G) ]k = Do( ) 0.0598 versus 0.0728. The median error for the VGFH for-
(q-12) mula (0.014Q is much larger than that of the GM-pl formula
with (0.0054. The average error of the VGFH formul@.0251) is
more than twice as large as the GM-pl formya0124,
~ 4k-1)/g+2 a mainly since two errors are quite large rather than just one.
P(G) = Po (2k-1-2k- 1)/ : Note that even allowing the Galam and Mauger estimate to
a) :
use the formula for the class that gives the closest result, the
Again, asq— o, the first quantity converges to zero, while VGFH formula still has a smaller error for two of the nine
the second tends a positive constant. lattices. These comparisons are summarized in Table II.
Therefore, none of the VGFH or GM-pl universal formu-  Wierman[34] has shown that there exist graphs with av-
las provide an adequate approximation under subdivision. erage degree 6 that have bond percolation thresholds arbi-
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TABLE Il. Comparison of bond percolation formula accuracy of ~ TABLE IV. Comparison of site percolation formula accuracy of

the VGFH and GM-pl formulas by three measures of error. the GM-sr and GM-pl formulas by four measures of error.
VGFH GM-pl GM-sr GM-pl

Maximum 0.0728 0.0598 Maximum 0.1008 0.0552

Median 0.0140 0.0054 Median 0.0502 0.0048

Mean 0.0251 0.0124 Mean 0.0485 0.0179

trarily close to zero, and by duality, graphs with average Some items for the GM-pl formulas are marked “Partly,”
degree 3 that have bond percolation thresholds arbitrarily® indicate that the answer depends on the specification of
close to 1. Thus, the VGFH formula makes errors of at leasflasses of graphs used to make the formula well-defined. The

0.3333 and the GM-pl formula makes errors of at leastGM-pl formulas are computable only if the class can be de-
0.3206. termined. With information about the bond or site threshold,

a class can be assigned to a lattice, and the GM-pl value can
be easily computed. The adjacency property will be satisfied
if the definition of classes depends only on the adjacency
There are only three lattices in the physical science literastructure. Consistency with the containment and contraction
ture for which the exact site percolation threshold is known principles depends on whether or not the related graphs can
and there are no nearly exactly solved cases. For this reasdme of different classes. As discussed in Sec. lll, the accuracy
we must use simulation estimates as a standard for evaluadepends heavily on the class definition, since the formula
ing site threshold formulas. We will rely on high precision values for the two classes may differ by as much as 0.1470
simulation estimates of the site percolation thresholds of théor site models and as much as 0.0983 for bond models.
11 Archimedean lattices by Suding and Ziff]. The rating for duality and matching are to be interpreted
Table 11l provides the numerical comparisons of theas follows. “Yes” indicates that the VGFH formula has been
GM-sr and GM-pl site threshold formulas. The GM-sr for- proved to be consistent with duality. “Fair” indicates that the
mula underestimates the percolation threshold for 10 of théormula is not consistent with either duality or self-duality
11 graphs. It also has nearly twice as large a maximum erraifor bond models or with either matching or self-matching
(0.1008 as the GM-pl formulg0.0552. The median errors (for site modely but the difference from one of the critical
are strikingly different: 0.0502 for GM-sr versus. 0.0048 for probability sums of appropriate pairs of graphs is relatively
GM-pl. The average error of the GM-sr formula.0485 is small. “Poor” is not consistent, as for “Fair,” but with rela-
almost three times larger than that of the GM-pl formulatively large numerical errors. Although not used here,
(0.0179. These error measures are summarized in Table IV:Good” would indicate that the formula is not consistent
with duality, but is consistent with self-duality, for example.
IV. EVALUATION OF UNIVERSAL FORMULAS To evaluate accuracy, we have set Qbsolute standards for
each of the three summary statistics for the error—
We summarize our evaluation of the four universal formu-maximum, mean, and median—for ratings of Excellent,
las in Table V. For each of the nine desirable properties, wé&ood, Fair, and Poor. The standards for the mean and median
give our evaluation. are the same, while those for the maximum are twice as high.

B. Accuracy of site model formulas

TABLE Ill. Numerical comparison of site percolation formula values for the 11 Archimedean lattices,
using estimates by Suding and Ziff. Each superscript in the column labeled GM-pl value indicates which
class formula provides the value given.

Lattice name  Suding-Ziff estimate g GM-sr value GM-sr error GM-pl value  GM-pl error

(3,12 0.8079.. 3 0.7071 0.1008 0.8396 0.0317
4,6, 12 0.7478 3 0.7071 0.0307 0.6926 0.0552
4, &) 0.7297 3 0.7071 0.0226 0.6926 0.0371
Hexagonal 0.6970 3 0.7071 0.0101 0.6926 0.0044
Kagomé 0.6527. 4 0.5774 0.0753 0.6540 0.0013
(3,4,6,4 0.6218 4 0.5774 0.0444 0.5985 0.0233
Square 0.5937 4 0.5774 0.0163 0.5985 0.0048
(3% 6) 0.5795 5 0.5000 0.0795 0.5478 0.0317
(3% 4,3, 9 0.5508 5 0.5000 0.0508 0.5478 0.0030
(38,43 0.5502 5 0.5000 0.0502 0.5478 0.0024
Triangular 0.5000. 6 0.4472 0.0528 0.49%9 0.0021
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TABLE V. Summary of evaluations of universal formulas. B. Relationship between formulas for bond and site models
Bond model Site model In [23], Galam and Mauger extended their formula via the
Property VGFH GM-pl GM-sr  GM-pl use of an effective parametgg; to replace thfa average co-
ordination numberg. They suggest that their formula has
Well-defined Yes No Yes No predicting ability for percolation thresholds which have not
Computable Yes Partly Yes partly ~ Yet been computed. For example, if the site threshold of a
Values in[0,1] Yes No Yes No lattice has bgen estimated, can be computed from .the
Adjacency Yes Partly Yes Partly formula for site thresholds, and can be used to predict the
X , ) ) bond threshold from the formula for bond thresholds.
Accuracy(maximun) - Fair Fair Poor Fair The Galam & Mauger extension raises the issue of evalu-
Accuracy (mean Good  Excellent ~ Poor  Excellent ating the relationship between formulas for the bond thresh-
Accuracy (median Fair Good Fair Good old and the site threshold. We have already identified some
Duality and matching  Yes Fair Poor Fair desirable properties.
Containment No No No No (1) The universal formulas should be consistent with the
Contraction No No NA. NA. bond-to-site transformation, satisfying
Subdivision No No N.A. N.A.

(G bond = p(L(G)site),

Admittedly, the levels are somewhat arbitrary, but we believeVhereL(G) denotes the covering graphiso called theine
that they make useful distinctions. The rating standards ar@raph in the mathematical literatureof G. This equality
summarized in Table VI. We have Opted not to Combineholds for percolatlon thresholds by an early observation of

these ratings into a single measure of accuracy, so all thrdaisher[32]. . _
ratings are included in Table V. (2) For every graph, the universal formulas should satisfy

The evaluation shows that there is considerable room foPc(G bond < (G site). Hammersley[37] proved that this
improvement in universal formulas for percolation thresh-holds for percolation thresholds of every infinite graph.
olds. All the formulas studied fail at least three of the nine  (3) The universal formulas should not imply that two
criteria. Although much older, the VGFH satisfies more ofgraphs must have their bond percolation and site percolation
the properties than the GM-pl formula for bond thresholdsthresholds in the same order. While this was commonly be-
Between the two site threshold formulas, the GM-pl formulalieved for many years, Wiermai88] provided examples of

fails more properties but is much more accurate than th@airs of graphs with the site percolation thresholds in the
GM-sr formula. opposite order to their bond percolation thresholds.

V. EUTURE RESEARCH DIRECTIONS C. Developing improved universal formulas

The ultimate goal of this research program is to develop

tigation of a few universal formulas. There are three relat improved universal formulas. This is a challenging problem,
dga ? 0 3 © g dffaﬂ ° trl: afs.” ere a eb et_e € afe ince it is clear from our analysis that the existing universal
irections, described briefly in the following subsections, fore - oova much to be desired.

future research that are particularly interesting to the authors. A way must be found to incorporate other information

besides the dimension and the average degree of the lattice.
This can be seen in Table lll, since graphs with the same
degree have different percolation thresholds. For example,
Researchers have considered other means of developitige four Archimedean lattices which are regular with degree
universal formulas for the percolation threshold, based on & have estimated site percolation thresholds ranging from
minimal spanning tree approaff7-29, lattice Green func- 0.6970 to 0.8079.
tions [35], filling factor [30], and preferred directions for The major challenges are to identify other features of the
cluster formation[36], which can be evaluated using the graphs that play a role in determining the percolation thresh-

The work described in this article is a preliminary inves-

A. Other formulas or methods

framework of this paper. old, and to formulate improved universal formulas which
satisfy more of the desirable properties than the existing uni-
TABLE VI. Standards for ratings of accuracy. versal formulas. _ _
As one possibility, Wierman and VahidiB9] suggested
Maximum Median Mean that the variability of the vertex degree has an effect on the

percolation threshold, with higher variability leading to
Poor Above 0.1000  Above 0.0500  Above 0.0500 lower critical probability values. For planar lattice bond per-
Fair  0.0500 to 0.1000 0.0250 to 0.0500 0.0250 to 0.0500colation models, the variability of degree of the dual lattice
Good  0.0200 to 0.0500 0.0100 to 0.0250 0.0100 to 0.025ccorresponds to the variability of the number of sides of faces

Excellent Below 0.0200 Below 0.0100 Below 0.0100 N the original lattice, so characteristics of the faces may play
a role. Formulation of these ideas will necessarily involve
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threshold formula which might outperform the GM-sr and of Serge Galam, particularly regarding the creation of abso-

GM-pl formulas. lute standards for accuracy ratings.
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